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SUMMARY

A semi-implicit three-step Runge–Kutta scheme for the unsteady incompressible Navier–Stokes equations
with third-order accuracy in time is presented. The higher order of accuracy as compared to the existing
semi-implicit Runge–Kutta schemes is achieved due to one additional inversion of the implicit operator
I − ��L, which requires inversion of tridiagonal matrices when using approximate factorization method.
No additional solution of the pressure-Poisson equation or evaluation of Navier–Stokes operator is
needed. The scheme is supplied with a local error estimation and time-step control algorithm. The
temporal third-order accuracy of the scheme is proved analytically and ascertained by analysing both
local and global errors in a numerical example. Copyright ? 2005 John Wiley & Sons, Ltd.

KEY WORDS: Navier–Stokes equations; semi-implicit Runge–Kutta method; third-order accuracy

1. INTRODUCTION

Spatial discretization of the incompressible Navier–Stokes equations with su�ciently �ne
resolution leads to sti� problems and requires implicit methods for time advancement. Fully
implicit methods produce a set of nonlinear coupled equations for the �ow variables on the
new time level, and are usually prohibitively costly for long-term calculations, such as tur-
bulent �ow simulations. Semi-implicit methods, in which only a part of the Navier–Stokes
operator is treated implicitly, present a reasonable compromise for this class of �ows. In
fact, the majority of direct and large eddy simulations to date have used semi-implicit time-
advancement methods. In wall-bounded �ow simulations only the linear viscous term of the
Navier–Stokes equations is usually treated implicitly, and the corresponding set of linear equa-
tions is solved e�ectively with the help of an approximate factorization technique.
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One of the popular schemes was proposed in Reference [1]. It consists of a second-
order-explicit Adams–Bashforth method for the convective terms and a second-order-implicit
Crank–Nicolson method for the viscous term. The Adams–Bashforth method, as well as �rst-
and second-order accurate Runge–Kutta methods, is unconditionally unstable for a pure con-
vection equation. However, the instability is weak, and the method usually works for CFL
numbers less than 1.0 in the presence of a viscous term. Third-order accurate Runge–Kutta
methods seem more suitable for convective terms because of their stability. Slightly di�erent
semi-implicit schemes based on a third-order accurate low-storage Runge–Kutta method were
presented in References [2–4]. These are the three-step schemes, which require three times
more operations to advance to a new time level compared with the scheme of Reference [1].
However, due to high accuracy and stability they are often preferably compared with the
Adams–Bashforth-based schemes.
The previously mentioned Runge–Kutta-based schemes use second-order accurate implicit

methods for the viscous term, thus, their overall accuracy is second order in time. Apparently,
it is impossible to achieve a third-order accuracy within a classical three-step semi-implicit
Runge–Kutta method, each step of which consists of the three substeps: (a) evaluation of
the convective and viscous terms of the Navier–Stokes equations for a given velocity �eld,
(b) solution of a linear system connected with the implicit terms, (c) solution of a Poisson
equation for the pressure (or pseudo-pressure).
In this paper, we present a third-order accurate semi-implicit Runge–Kutta scheme for the

Navier–Stokes equations. The higher order of accuracy is achieved due to one extra substep
(b). Thus, our scheme may be referred as 313 -step scheme. Note that among the three substeps,
solution of the Poisson equation is usually the most time consuming substep except in the
case of a spectral spatial discretization. On the contrary, evaluation of the nonlinear convective
terms in substep (a) is the most expensive for spectral methods. Regarding substep (b), it
is a relatively inexpensive substep both in spectral and �nite-di�erence methods when using
approximate factorization technique. Thus, the overall overhead of our scheme is similar to
that of the classical one.
The scheme is supplied with a built-in local accuracy estimation and time-step control al-

gorithm. The idea of the time-step control algorithm is not novel. It was �rst utilized in
semi-implicit Runge–Kutta schemes for the Navier–Stokes equations in References [5, 6].
Being extensively exploiting for a period of about 10 years it proved itself to be e�cient
and convenient, especially for �ows with variations in characteristic time scales, for instance,
in simulations of laminar–turbulent transition.
One of the di�culties in constructing high-order-accurate implicit time integration schemes

for the Navier–Stokes equations is the so-called pressure problem. It arises because the equa-
tions for the velocity and the pressure are a coupled system with the incompressibility condi-
tion. Nearly all numerical schemes for solving Navier–Stokes equations in terms of primitive
variables use a fractional step approach in which the auxiliary velocity �eld is at �rst com-
puted by ignoring the incompressibility constraint and then projected onto a divergence-free
�eld. The determination of boundary conditions for the auxiliary velocity �eld- and pressure-
related quantities has been a subject of considerable discussion in the literature over many
years (see Reference [7] and references therein). We construct our scheme in terms of the
spatially discretized Navier–Stokes equations. Following this approach [8, 9], no boundary
conditions for the auxiliary velocity �elds are needed. In our scheme only the �nal velocity
�eld at each complete time step satis�es a discrete continuity equation exactly, while the
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velocities on the intermediate time levels are divergence-free only to within a certain trun-
cation error. Such a trick leads to a relatively simple solution to the pressure problem while
retaining a desired order of accuracy.

2. SEMI-IMPLICIT THIRD ORDER ACCURATE RUNGE–KUTTA METHOD

In this section, we construct a semi-implicit third-order accurate Runge–Kutta method for
a system of ordinary di�erential equations

dw
dt
=F(t; w) (1)

where w(t) is an unknown vector function, t is an independent variable which will be referred
as time, and F is a nonlinear operator. We assume that all necessary conditions for existence
of su�ciently smooth solution w(t) are satis�ed. A semi-implicit method to advance from wn
at time tn to wn+1 at time tn+1 = tn + � is based on the following explicit third-order accurate
Runge–Kutta method:

w′ − wn
�

=
2
3
Fn (2)

w′′ − wn
�

=
1
3
Fn +

1
3
F ′ (3)

wn+1 − wn
�

=
1
4
Fn +

3
4
F ′′ (4)

Here Fn ≡F(tn; wn), F ′ ≡F(tn+2�=3; w′), and F ′′ ≡F(tn+2�=3; w′′). This particular method is
selected from a 2-parameter family of the third-order accurate Runge–Kutta methods
according to the following requirements. First, the third step of the method (4) does not
include F ′. This is essential for the following construction of the semi-implicit scheme.
Second, the method has the coincident abscissas (F ′ and F ′′ are evaluated for the same
time moment tn + 2�=3), which will be convenient for the Navier–Stokes equations.
The semi-implicit scheme is constructed by perturbing (2)–(4) taking into account the

following relations:

w′ =w(tn + 2�=3) +O(�2)

w′′ =w(tn + 2�=3) +O(�3)

wn+1 =w(tn+1) +O(�4)

(5)

Let L be a linear operator (some approximation to the Jacobian @F=@w) and � be a positive
number. Consider the following implicit scheme:

w′ − wn
�

=
2
3
Fn + �L(w′ − wn) (6)
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w′′ − wn
�

=
1
3
Fn +

1
3
F ′ + �L(w′′ − w′) (7)

wn+1 − wn
�

=
1
4
Fn +

3
4
F ′′ + �L(wn+1 − w̃n+1) (8)

where w̃n+1 is some O(�2) approximation to w(tn+1) (i.e. w̃n+1 =w(tn+1) +O(�3)). It is easy
to see, that the right-hand side (rhs) of (6) is a O(�) perturbation to the rhs of (2), which
leads to a O(�2) variation in w′ and in F ′. Then, the rhs of (7) is a O(�2) perturbation to
the rhs of (3), which leads to a O(�3) variations in w′′ and in F ′′. At last, the rhs of (8)
is a O(�3) perturbation to the rhs of (4), causing a O(�4) variation in wn+1. Thus, the local
error of the scheme wn+1 − w(tn+1) is still O(�4), so that the scheme retains the third order
of accuracy. Note that the absence of F ′ in the rhs of (8) is a necessary condition for this.
The problem is that w̃n+1, the O(�2) approximation to w(tn+1), required for the third step of

the method cannot be constructed in terms of wn; w′, and w′′. In fact, in the explicit case it
would follow that w̃n+1 = 9

4w
′′ − 3

4w
′ − 1

2wn or, equivalently, (w̃n+1 −wn)=�= 1
4Fn+

3
4F

′. Since
in the implicit case the variation of w′ is O(�2) and the variation of w′′ is O(�3), then the
variation in w̃n+1 is also O(�2), and it is no longer an O(�2) approximation to w(tn+1).
The solution to the problem is to obtain w̃n+1 from the following equation:

w̃n+1 − wn
�

=
1
4
Fn +

3
4
F ′ + �L(w̃n+1 − �wn+1) (9)

Here, �wn+1 is an O(�) approximation to w(tn+1), which may be taken as

�wn+1 = 3
2(�w

′ + (1− �)w′′)− 1
2wn (10)

Calculation of w̃n+1 from (9) requires solution of a linear system with the matrix I − ��L
(I is an identity matrix), and does not require additional evaluations of F . In (10), � is an
arbitrary real parameter, but as will be shown later, the choice which allows economy of
some run-time memory is

�= 3
2 (11)

The scheme (6)–(10) possesses a third-order accuracy irrespective of the values of �; �, and
of the operator L. In fact, di�erent � (and even di�erent L) may be chosen for di�erent
steps of the scheme without a loss in the order of accuracy. For di�erent �, the scheme
will have di�erent implicit operators I − ��L, so in the general case it would be more costly
to precompute them, preinvert them and store them. Note that the scheme may be used in
implicit (L �=0) mode as well as in explicit (L≡ 0) modes.

3. STABILITY ANALYSIS

For a linear stability analysis we assume the operator of the system (1) to be linear and to
coincide with the implicit operator, F ≡L. Then, from (6)–(11) we derive the relation

wn+1 =R(�L)wn (12)
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Here, the matrix-valued function R is called the ampli�cation matrix, and the corresponding
rational function R(z) is the stability function of the scheme:

R(z) = (1− �z)−4[1− (4�− 1)z + (�− 1
2 )(6�− 1)z2

− (4�3 − 6�2 + 2�− 1
6 )z

3 + �(�− 1
2 )(�

2 − 2�+ 1
3)z

4] (13)

For the A-stability of the scheme it is necessary |R(z)|61 for all z in the left semi-plane
of a complex plane. A simple analysis shows that �¿ 1

3 is a necessary and su�cient condition
for this. The optional requirement R(z)→ 0 for z→ −∞ leads to �= 1

2 or �=1+ (
2
3)
1=2.

In numerical experiments with the Navier–Stokes equations we have found that the minimal
possible � produces the most accurate results. Stability conditions are similar for all �¿ 1

3 .
Thus, we recommend

�= 1
3 (14)

and all following considerations assume this value of �.

4. LOCAL ERROR ESTIMATION AND TIME-STEP CONTROL

The scheme may be supplied with a local error estimation and time-step control algorithm
based on the idea of embedded formulas [10]. After realization of all the steps of the
scheme (6)–(9) we have at our disposal approximations to w(tn+1) of two di�erent orders:

wn+1 =w(tn+1) +O(�4) and w̃n+1 =w(tn+1) +O(�3) (15)

Let ‖ · ‖ be a certain appropriate norm. The local error of integration �= ‖wn+1 − w(tn+1)‖
is O(�4), and at least for su�ciently small � the inequality �¡err with

err = ‖wn+1 − w̃n+1‖ (16)

will hold since err =O(�3). Thus, with a certain portion of overestimation, err may be taken
as an approximation to �. For a given tolerance tol and supposing err(�)=C�3 the optimal
time-step �opt, providing err(�opt)= tol, is determined by

�opt = facopt · �; facopt = (tol=err)1=3 (17)

If facopt determined from (17) is too small, facopt¡facmin, with, say, facmin = 0:5, then the
complete step is considered as unsuccessful, and integration is repeated, starting with wn
(which is kept safe) with a smaller time-step �new, say, �new = facmin · �. Otherwise, the step
is considered as successful, and time-step �new for the next step is set as

�new = fac · �; fac= min{facopt ; facmax} (18)

with, say, facmax =1:5.
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4.1. Example: Van der Pole’s equation

To illustrate the work of the time-step control algorithm we apply the scheme to Van der
Pole’s equation

dx
dt
= y≡f1(x; y)

dy
dt
= �(1− x2)y − x≡f2(x; y)

For ��1 this system is sti� and requires an implicit method for numerical solution. For
the implicit operator L we use the Jacobian @(f1; f2)=@(x; y) computed at the initial time
moment tn for each time integration step [tn; tn+1]. Figure 1 presents the results for application
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Figure 1. Solution of Van der Pole’s equation: (a) x(t); (b) y(t); and (c) time history of time-step �.
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of the scheme (6)–(9) with tol=10−3 and ‖w‖ ≡ |x|. In a limiting cycle corresponding to
�=10, shown in the �gure, the extended periods of slow variations in x alternate with abrupt
sign changes. The behaviour of �(t), shown in the Figure 1(c), re�ects such a behaviour
of the solution. Within a half-period of oscillation the time-step � varies over two orders
of magnitude. With the given tolerance tol=10−3 integration over one period of oscillation
requires about 60 time steps plus 4 unsuccessful steps.

5. APPLICATION TO NAVIER–STOKES EQUATIONS

The spatially discretized Navier–Stokes equations may be written in the following form:

dw
dt
= H (t; w)−Gp (19)

Dw + Cbc(t) = 0 (20)

Vectors w(t); p(t) represent the unknown velocities and pressures. G and D are the discrete
gradient and divergence operators, respectively. H contains contributions from convection and
viscous di�usion operators including contributions of the inhomogeneous boundary conditions.
We suppose that boundary condition information is already incorporated into H;G, and D
operators [8, 9]. Contributions of any inhomogeneous boundary conditions to the discretized
continuity equation (20) is denoted by Cbc.
For a given velocity w, the pressure may be found after evaluation of H from the discrete

Poisson equation which is a direct consequence of (19) and (20):

DGp=DH +
dCbc
dt

(21)

After that the discretized Navier–Stokes equations are reduced to form (1) with

F =H −Gp (22)

Now, scheme (6)–(9) may be directly applied for time advancement of the discretized
Navier–Stokes equations. Starting from wn=w(tn) and after completing all the steps, the �nal
result wn+1 is an O(�3) approximation to w(tn+1), which means that the local error wn+1 −
w(tn+1) is O(�4). In particular, supposing that the discrete incompressibility condition (20)
was exactly satis�ed for wn for wn+1 we will have

Dwn+1 + Cbc(tn+1)=O(�4) (23)

The de�ciency in the direct application of the scheme to the Navier–Stokes equations is that
an error in the incompressibility condition accumulates during the repeatable process of time
advancement, which may negatively a�ect the quality of the numerical solution. Fortunately,
this de�ciency may be easily improved by using a pressure splitting technique on the last step
of the scheme. To show this, let us rename the �nal result of application (6)–(9) by un+1
(instead of wn+1). Then, the original formula for the last step may be written as

un+1 − wn
�

=
1
4
Fn +

3
4
(H ′′ −Gp′′) + �L(un+1 − w̃n+1) (24)
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where p′′ is a solution to the equation

DGp′′=DH ′′ +
dCbc(t + 2�=3)

dt
(25)

Instead of using (24) we �rst calculate the auxiliary vector ŵn+1 from

ŵn+1 − wn
�

=
1
4
Fn +

3
4
(H ′′ −Gp′) + �L(ŵn+1 − w̃n+1) (26)

and then project it to the divergence-free �eld by subtracting an appropriate pseudo-pressure
gradient Gq:

wn+1 = ŵn+1 −Gq (27)

Dwn+1 + Cbc(tn+1) = 0 (28)

Now, the vector wn+1 satis�es the discrete incompressibility condition exactly. Let us show
that wn+1 is another possible O(�3) approximation to w(tn+1). It is su�cient for this to show
that wn+1 − un+1 =O(�4).
Comparison of (26) with (24) leads to the formula

(I − ��L)(ŵn+1 − un+1)=− 3
4�G(p

′ − p′′) (29)

First, note that since DGp′=DH ′ + dCbc(tn + 2�=3)=dt, DGp
′′=DH ′′ + dCbc(tn + 2�=3)=dt,

and H ′ −H ′′=O(�2) (this is a convenience of coincident abscissas), then

G(p′ − p′′)=O(�2) (30)

Two relations arise from (29) and (30)

ŵn+1 − un+1 = O(�3) (31)

ŵn+1 − un+1 = − 3
4�G(p

′ − p′′) +O(�4) (32)

Substitution of (27) into (29) produces the following:

(I − ��L)(wn+1 − un+1)=−[Gq+ 3
4�G(p

′ − p′′)] + ��LGq (33)

From (27), (28) the pseudo-pressure q satis�es the equation

DGq=Dŵn+1 + Cbc(tn+1) (34)

which may be rewritten as DGq=Dun+1 + Cbc(tn+1) + D(ŵn+1 − un+1). Finally, taking
into account that Dun+1 +Cbc(tn+1)=O(�4), we obtain DGq=D(ŵn+1 − un+1) +O(�4). Now,
from (31) it follows DGq=O(�3) which implies

Gq=O(�3) (35)

and from (32) we get

Gq+ 3
4�G(p

′ − p′′)=O(�4) (36)
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Hence, the rhs of (33) is O(�4) and, thus,

wn+1 − un+1 =O(�4) (37)

It is useful to exclude Fn from the formula (7) for w′′, to exclude Fn; F ′ from the formula (9)
for w̃n+1, and to exclude Fn from the formula (26) for ŵn+1. After that, the scheme takes the
following compact form:
Step 1:

Hn =H (tn; wn)

DGpn =DHn + dCbc(tn)=dt

(I − ��L)(w′ − wn) = 2
3�(Hn −Gpn)

(38)

Step 2:

H ′ =H (tn + 2�=3; w′)

DGp′ =DH ′ + dCbc(tn + 2�=3)=dt

(I − ��L)(w′′ − 3
2w

′ + 1
2wn) =

1
3�(H

′ −Gp′) + wn − w′

(I − ��L)(w̃n+1 − 3
2w

′′ + 3
4w

′ − 1
4wn) =

3
4(w

′′ − wn)

(39)

Step 3:

H ′′ =H (tn + 2�=3; w′′)

(I − ��L)(ŵn+1 − 1
2 w̃n+1 − 3

4w
′′ + 1

4wn) =
3
4�(H

′′ −Gp′) + 5
8wn +

3
8w

′′ − w̃n+1
DGq=Dŵn+1 + Cbc(tn+1)

wn+1 = ŵn+1 −Gq

(40)

The bene�t of choosing �= 3
2 (11) in (10) is that the last step formula (40) does not include

vector w′. Thus, storage for only four velocity vectors plus one pressure vector is necessary
to perform all the steps of the scheme. After calculation of wn+1 vectors w̃n+1 and wn are kept
safe, so that the local error may be estimated by (16), and the integration may be repeated
starting from tn if necessary.
In the conclusion it is noted that the presented scheme is completely self-starting. Only an

initial condition for the velocity wn is needed to perform all the steps.

6. NUMERICAL EXAMPLE. FLOW IN A DRIVEN CAVITY

In this section, we present the veri�cation of the constructed scheme considering unsteady
laminar �ows in a square cavity. The �ows in a driven cavity have been used widely as a
standard test case for evaluating the stability and accuracy of numerical methods for incom-
pressible �ow problems.
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Figure 2. Local error as function of time-step �.

The Navier–Stokes equations in a square domain (06x61; 06y61) are discretized on a
128× 128 stretched staggered mesh. In each direction the mesh size in the neighbourhood of
a boundary is about 1

3 of that in the midplane. As is known, no ad hoc pressure boundary
conditions are needed when using a staggered mesh. For solution of the discrete Poisson
equation we use a direct method of cyclic reduction [11]. Only the viscous terms are treated
implicitly using an approximate factorization method (i.e. operator L in (38)–(40) de�ned as

(I − ��L)=
(
I − ��

Re
@2

@x2

) (
I − ��

Re
@2

@y2

)

6.1. Estimation of the local error

In the �rst test case we consider the unsteady �ow driven by the time-periodic movement of
the upper wall and time-periodic suction through the upper wall:

u(x; y=1)= cos(!t); v(x; y=1)=0:2 sin(2�x) sin(!t); !=2�=10 (41)

Hence, boundary conditions for the both tangential and normal velocities are inhomogeneous
and unsteady. These arti�cial boundary conditions are chosen in order to demonstrate the
ability of the scheme to properly handle the unsteady boundary conditions. Calculations are
carried out at Reynolds number Re=100 with zero initial conditions.
The goal is to show that the local error of time integration is O(�4). Starting from t0≈40

we perform one integration step with di�erent �. Because of the lack of an exact solution,
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Figure 3. Global error as function of time-step �. Closed squares, present scheme; open squares,
semi-implicit Runge–Kutta scheme [4]; open circles, Adams–Bashforth=Crank–Nicolson scheme [1];
closed circles, semi-implicit one-step Adams–Bashforth=third-order backward Euler projection scheme

[12]. The upper bound of � for each scheme corresponds to the observed stability limit.

we compare the results of the implicit scheme with the results obtained with the use of the
explicit scheme (2)–(4) which unquestionably approximates the exact solution within an O(�4)
error. The maximum di�erence between these two solutions �i–e is shown in the Figure 2 as
a function of the time-step �. The ∼�4 behaviour of the �i–e supports a third-order accuracy
for the scheme.

6.2. Stability and global accuracy analysis: comparison with other schemes

In the second test case we consider the �ow in a cavity driven by an impulsively started
upper wall:

u(x; y=1)=1; t¿0; u(x; y=1)=0; t¡0 (42)

Calculations are carried out at Reynolds number Re=1000. At �rst, the equations are inte-
grated from t=0 to 1 by an explicit fourth-order Runge–Kutta method. After that, starting
from this ‘initial’ state the approximate solutions at t=2 are obtained with di�erent � and
di�erent methods. The results obtained using an explicit fourth-order accurate Runge–Kutta
method with �=10−4 are considered as ‘exact’, and the global errors corresponding to dif-
ferent methods and di�erent �¿10−3 are evaluated by comparison with this ‘exact’ solution.
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Besides, the present scheme the calculations were performed with several other semi-implicit
schemes, namely: the semi-implicit Runge–Kutta scheme of [4], the Adams–Bashforth=Crank–
Nicolson scheme of [1], and the scheme of [12]. The latter is a semi-implicit one-step Adams–
Bashforth=third-order backward Euler projection scheme. There exists some uncertainty in the
literature in handling the unsteady boundary conditions, and therefore the steady boundary
condition case is chosen for the comparative analysis.
The results are summarized in Figure 3 where the global error as a function of the time-

step � is presented for each tested scheme. The maximum � shown in Figure 3 for each
scheme corresponds to its stability limit observed in calculation. The slopes of all the curves
are consistent with the orders of accuracy: ∼�3 for the present scheme and for the scheme [12],
and ∼�2 for the schemes [1, 4]. As was expected, the stability limit of the one-step methods
for this high Reynolds number �ow is considerably lower, than that of three-step Runge–Kutta
schemes. On the whole, the present scheme looks preferable over second-order schemes both
by accuracy and stability criteria. As for the scheme of [12], it looks advantageous over the
present scheme with respect to accuracy, taking into account that it requires about three times
less computations per time step. Probably, for low Reynolds number �ows, when stability
restriction of this scheme will be less pronounced, it may be preferable over the Runge–Kutta
based schemes.

7. CONCLUSION

A semi-implicit Runge–Kutta scheme for the unsteady, incompressible Navier–Stokes equa-
tions with a third-order accuracy in time is devised. The higher order of accuracy is achieved
due to one additional inversion of the implicit operator I − ��L, which requires inversion
of tridiagonal matrices when using an approximate factorization method. No additional solu-
tion of the pressure-Poisson equation or evaluation of the Navier–Stokes operator is needed.
The temporal third-order accuracy of the scheme is proved analytically and ascertained by
analysing both local and global errors in simulations of unsteady �ows in a driven cavity. The
constructed scheme promises to be an improvement over existing schemes for high Reynolds
number �ows.
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